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ABSTRACT 
The soil-structure interaction developing due to the construction of vertical shafts in soft ground is numerically 
investigated in this study using the finite and discrete element methods. An axisymmetric joint element is utilized to 
model the interaction between the shaft lining and the surrounding soil using axisymmetric finite element method. The 
results are compared with those obtained using discrete element analysis where the soil domain is modeled using 
discrete particles while the shaft is modeled as a rigid cylinder. The effect of soil displacement in the vicinity of the shaft 
lining was examined by incrementally reducing the shaft diameter and calculating the pressure acting on the shaft as well 
as the stress distribution in soil. Results obtained from the two methods are then compared and conclusions are made 
regarding the sufficiency of these methods to analyze similar axisymmetric geotechnical engineering problems. 
 
RÉSUMÉ 
Dans cette étude, l’interaction sol-structure, causé par la construction de puits verticaux dans le sol, est examinée de 
façon numérique grâce à la méthode des éléments finis ainsi que la méthode des éléments discrets. Un élément de joint 
axisymétrique est utilisé pour modéliser l’interaction entre le revêtement du puits et le sol avoisinant en employant la 
méthode des éléments finis axisymétrique. Les résultats sont comparés avec ceux obtenus avec la méthode des 
éléments discrets ou le domaine du sol est modélisé en utilisant des particules discrètes tandis que le puits est modélisé 
comme étant un cylindre rigide. L’effet du déplacement du sol à proximité du revêtement du puits est examiné en 
prenant en considération une réduction incrémentale du diamètre du puits, le calcul de la pression exercée sur le puits 
ainsi que la répartition des contraintes dans le sol. Les résultats obtenus pour les deux méthodes sont, ensuite, 
comparés et des conclusions sont émises concernant la suffisance de ces méthodes à analyser des problèmes 
similaires d’axisymétrique géotechnique. 
 
 
1 INTRODUCTION 
 
Evaluating earth pressure on vertical shafts and stress 
distributions in the surrounding soil have received 
extensive research interest in the past few decades. This 
is due to the fact that earth pressure acting on cylindrical 
walls does not generally follow the conventional analytical 
solutions used for plane strain analysis. Experimental 
studies that examined pressure distribution around 
vertical shafts have been reported in the literature 
including Walz (1973), Lade et al. (1981), Konig et al. 
(1991), Chun and Shin (2006) and Tobar and Meguid 
(2011). Theoretical solutions emphasizing 3D arching 
around shaft linings have also been reported such as 
Cheng and Hu (2005); Cheng et al. (2007); Salgado and 
Prezzi (2007); Andresen et al. (2010) and Osman and 
Randolph (2012). Beside experimental and analytical 
analyses, numerical approaches such as Finite element 
method (FEM) and Discrete element method (DEM) have 
been used to model the behavior of shaft systems. FE 
simulations reported by Wong and Kaiser (1988) and 
Wang et.al (1997) did not properly consider the interface 
behavior between the shaft and surrounding soil. The 
Discrete element method (DEM) proposed by Cundall and 
Strack (1979) has proven to be a promising approach to 

capture the response of granular materials. An attempt 
has been made by Herten and Pulsfort (1999) to apply the 
DEM to simulate a laboratory size shaft construction. 
Although the study provided useful results, the circular 
shaft was assumed to behave as a small flat wall which 
has lead to an inadequate simulation of the arching effect 
and the stress distribution around the shaft. Therefore, 
there is a need for an improved DE simulation of the 
problem considering the problem geometry as well as 
realistic soil properties. 

The two numerical methods, FEM and DEM, are used 
in this paper to analyze the soil-shaft interaction problem. 
In the first approach, an axisymmetric finite element 
analysis is implemented to model the interaction between 
the shaft lining and the surrounding soil using a newly 
developed axisymmetric joint element. In the second 
approach, the soil domain is modeled using DE particles 
while the shaft is modeled as a rigid cylinder. The results 
of the two numerical approaches regarding the pressures 
acting on the shaft and stress distributions in soil around 
the shaft are analyzed. The efficiency of the two methods 
in modeling this geotechnical engineering problem is also 
discussed.    

  



 

2 NUMERICAL SIMULATION 
 
2.1 FEM Simulation 
 
This study examines the earth pressure acting on a rigid 
shaft and stress distribution in the surrounding soil. The 
shaft has a diameter of 0.15m and a height of 1.0m 
embedded in a thick cohesionless sand layer. The 
geometry of the modeled problem is shown in Figure 1.  

 

Figure 1. Model of an axisymmetric vertical shaft 

Due to the axisymmetry in loading and geometry, an 
axisymmetric model has been selected for the shaft 
analysis. The interaction between the shaft and 
surrounding soil is modeled using a developed 
axisymmetric joint element. The formulation of the 
axisymmetric joint element (Goodman et al., 1968; Yuan 
and Chua, 1992) has been implemented in the FE 
program Phase

2
 (Rocscience, 2012) and is summarized 

below: 
 
Strain - Displacement matrix: 

 
Let u and v be the relative displacements along the 

local coordinates and ; ui and vi be the nodal 

displacements in the local coordinate system (Figure 2). 

Let  and  be the joint shear strain and joint normal strain 
in the local coordinate system, t be the thickness of the 
joint element, which is very small compared to the length 
of the joint. 
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Eq. 3 can be rewritten as: 
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Where B is the strain – displacement matrix, u is the 

displacement vector. 
 

 

Figure 2. A four –node axisymmetric joint element 
 

Elastic constitutive matrix: 
 

Note that the joint element represents the interaction 
between two finite elements and is not a material itself, 
therefore only the normal and tangential stresses exist.  
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In Eq. 6, kn and ks are the normal and shear stiffnesses of 
the joint, respectively. By eliminating the term thickness t, 
the elastic constitutive matrix becomes: 
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Element stiffness matrix: 
 
The element stiffness matrix in the local coordinate 
system:  

dR..
1

1 DBBK
T

    [8] 

where is the circumferential angle, and R is the radial 

distance in the global coordinate system. 

If  is one radian, (5) becomes: 
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The element stiffness matrix can be numerically 
calculated by: 
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Where NIP is the number of Gauss points, W(I) is the 

weighting coefficient in accordance with the Gauss point 
i
th

, J is the Jacobian determinant. 
In this study, the sand material reported in Tran et al. 

(2012) is used for the simulation. The peak friction angle 
of the axisymmetric joint element is determined to be the 
same as that of the sand. A parametric study was 
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conducted to examine the effect of the joint stiffnesses on 
the shaft-soil interaction. Results indicated that the joint 
stiffnesses do not have a significant effect on the 
simulation results. The material parameters of the joint 
element and sand layer are shown in Table 1. Active 
lateral earth pressures on the shaft and stresses in the 
soil domain are obtained by slightly moving inward the 
shaft lining.  
 

Table 1. Material properties in the FE simulation 

Sand material Joint material 
Unit weight 
(kN/m

3
) 

14.7 
Normal stiffness 
(kPa/m) 

100000 

Young’s Modulus 
(kPa) 

20000 
Shear stiffness 
(kPa/m) 

10000 

Poisson’s ratio 0.35 
Tensile strength 
(kPa) 

0 

Failure criterion 
Mohr- 

Coulomb 
Slip criterion 

Mohr- 
Coulomb 

Friction angle 
(peak) (deg) 

41 
Peak friction angle 
(deg) 

41 

Cohesion 
(kPa) 

0 
Peak cohesion 
(kPa) 

0 

 
2.2 DEM Simulation 
 
DEM Formulation: 
 
The discrete element method, generally, considers the 
interaction between distinct particles at their contact 
points. The interaction between particles is usually 
regarded as a dynamic process that reaches static 
equilibrium when the internal forces are balanced. The 
dynamic behavior is represented by a time-step algorithm 
using an explicit time-difference scheme. Newton's 
equations of motion are then used to determine particle 
displacement. 

The DEM simulations in this study are conducted 
using YADE, an open source discrete element code 
(Kozicki and Donze 2009, Šmilauer et al. 2010). Spherical 
particles of different sizes are used to represent an 
idealized granular material. The contact law between 
particles is briefly described below (Figure 3): 
 

 
Figure 3. Interaction between two DE particles  

If two particles A and B with radii rA and rB are in contact, 

the contact penetration depth is defined as: 
 

0A Br r d  Δ                         [11] 

 
where d0 is the distance between the two centers of 
particle A and B. 

The force vector F which represents the interaction 
between the two particles is decomposed into normal and 
tangential forces: 
 

.N N NKF Δ , .T T TK  F Δ             [12a,b] 

 

Where NF and TF  are the normal and tangential forces; 

KN and KT are the normal and tangential stiffnesses at the 

contact; TΔ  is the incremental tangential displacement 

and NΔ  is the normal penetration between the two 

particles. 
KN and KT are defined by: 
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where E is the particle material modulus. The interaction 
tangential stiffness KT is determined as a given fraction of 
the computed KN. The macroscopic Poisson's ratio is 
determined by the KT/KN ratio while the macroscopic 
Young's modulus is proportional to KN and affected by 
KT/KN. 

The tangential force TF  is limited by a threshold value 

such that: 
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where micro is the microscopic friction angle. 

To represent the rolling behavior between two 

particles A and B, a rolling angular vector rθ  is used. This 

vector describes the relative orientation change between 

the two particles. A resistant moment rM resulting from 

this change is computed by: 
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Kr is the rolling stiffness of the interaction computed by: 
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where 
r  is the rolling resistance coefficient and 

r is a 

dimensionless coefficient. 
To record macroscopic stress components within a 

representative volume V, the following equation is used: 
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where cN  is the number of contacts within the volume V, 

,c jf  is the contact force vector at contact c,  
,c ix is the 

branch vector connecting two contact particles  A and B, 
and indices i and j indicate the Cartesian coordinates. 
 
Shaft simulation: 

 
The vertical shaft is modeled using a cylinder 1.0 m in 

height and initial diameter of 0.15 m that comprises 12 
equally distributed segments. Since the modeled problem 
is axisymmetric, only part of the domain is modeled to 
reduce the computational cost. In addition, better 
representation of the problem can be achieved by 
simulating one "slice" of the soil domain with a large 
number of particles while keeping the simulation time 
acceptable. To capture the problem geometry, a quarter 
of the problem is modeled in this study. The model 
consists of a quarter of the shaft and four boundaries 
including three vertical and one horizontal at the bottom of 
the container (Figure 4). Each quarter of the shaft is 
divided into three segments to capture the curved shaft 
geometry. Pressures acting on the shaft are recorded at 
the middle segment to reduce the boundary effects.  
 

 
Figure 4. DEM model of the shaft problem 

 
The DE soil domain is generated using the multi-layer 

packing technique proposed by Tran et al. (2012). The 
packing procedure is described as follow: 

The number of layers is first chosen (ten layers in this 
study) and the volume of particles for each layer is 

calculated based on the target void ratio of the final soil 
specimen (which is 0.39). To generate the first layer, a set 
of non-contacting particles is first generated inside a box 
following a pre-determined particle size distribution until 
the target volume is reached. The height of the box is 
chosen to be larger than the target height of the layer to 
insure that all particles can be generated without 
overlapping. Gravity is then applied to all particles 
allowing them to move downward and come in contact 
with each other. The interparticle friction angle is set to 
zero. To increase the density of the packing, lateral 
shaking movement is applied to the box to help small 
particles move into voids between larger particles. The 
first layer generation is completed when the system 
reaches equilibrium. For the second layer, the height of 
the box is increased and the second "cloud" of non-
contacting particles is generated in the area above the 
existing particles. Gravity and shaking are then applied 
and the system is allowed to come into equilibrium. The 
procedure is repeated until the final specimen is formed. 
The proposed multi-layer approach helps increase the 
density of the packing while keeping the packing pattern 
realistic.  

 The behavior of a DE specimen depends not only on 
the packing structure but also on the particle size 
distribution. However, the true replication of grain size is 
usually restricted by the high computational cost caused 
by the large number of particles.  In this study, particles 
smaller than D5 (particle diameter corresponding to 5% 
passing) are neglected to reduce the computational time. 
This is appropriate as these particles are assumed to 
have minor effect on the force chains that transmit 
stresses within the sample (Calvetti 2008, Cheung 2010). 
For the simulation of large scale problems, particle up-
scaling is often used to reduce the number of modeled 
particles. Careful consideration of particle sizes is usually 
made to keep balance between the computational cost 
and the scaling effects on the sample responses. In this 
study, the scale factors (ratio of a numerical particle size 
to its real particle size) are chosen as 25 for the 
simulation. The particle size distribution used in the 
simulation is shown in Table 2.  

 
Table 2. Grain size distributions in the DE simulation 

Sieve diameter (mm) % passing  (weight) 

6 0 

10 22 

21 45 

25 100 

 
The properties of DE particles are determined from 

calibration tests using the direct shear test as reported in 
Tran et al. (2012). A summary of the DE parameters is 
given in Table 3. The diameter of the shaft is 
incrementally reduced to model the active condition. 
Lateral earth pressures on the shaft and stresses in the 
soil domain are recorded at different wall movements. As 
reported in Tran et al. (2012), the required wall movement 
to activate the pressure on shafts is less than 0.5% of the 
shaft height. Therefore, the simulation process finishes 
when the reduction in the shaft radius reaches 5 mm.  
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Table 3.  Particles' properties for DE simulation 

Parameter Value 

Particle density (kg/m
3
) 2650 

Particle material modulus E (MPa) 38 

Ratio KT/KN 0.25 

Friction angle   (degrees) 34 

R  0.05 

R  1 

 
 
3 RESULTS AND DISCUSSIONS 
 
The earth pressure distributions on the shaft obtained 
using FE and DE simulations are presented in Figure 5. 
The numerical results are also compared with analytical 
solutions reported by Terzaghi (1943), Berezantzev 
(1958), and Cheng and Hu (2005). The FE simulation 
provided the active pressure on the shaft with a small 
shaft lining movement (less than 1 mm in this study) 
whereas the DE simulation provided the pressure 
distributions with different shaft movements. It can be 
seen from the DE simulation that when the shaft 
movement increased, pressures acting on the shaft 
reduced. The pressure distributions following the solutions 
of Terzaghi and Berezantzev are in good agreement with 
the numerical results provided that enough wall 
movement is allowed. A good agreement between the FE 
and DE simulations results at a shaft movement of 4 mm 
is also observed.  

 

 
Figure 5. Pressure distributions along the shaft 

 
Figure 6 shows the displacement fields around the 

shaft for both the FE and DE simulations. It can be seen 
that a non-uniform failure zone of conical shape has 
developed along the shaft. The zone increased in size 
from the bottom of the shaft up to a region of 0.2 m in 
radius at the surface (about 2.5 times the shaft radius).  

 

 
Figure 6. Pressure distributions along the shaft 

 

 
Figure 7. Radial stress distribution in soil 
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Figure 8. Circumferential stress distribution in soil 

 
The radial and circumferential stresses in soil are 

shown in Figure 7 and 8. It can be seen from both FE and 
DE simulations that the radial stress near the shaft wall 
dropped rapidly and the change in radial stress mostly 
occurred within 0.3 m from the center of the shaft. The 
stress outside this region remained close to its initial state 
(Figure 7). The relief of radial stresses due to soil 
movement causes vertical (along the shaft height) and 
horizontal (in the circumferential direction) arching, and 
results in stress redistribution in the vicinity of the shaft. It 
is observed from Figure 8 that the circumferential stress 
near the shaft was smaller than the initial value. The 
circumferential stresses increased with distance from the 
shaft due to horizontal arching. At a distance of about 
0.15 m from the shaft center, the circumferential stress 
reached a maximum value which is larger than the initial 
value. A decreasing trend is observed with further 
increase in distance and the circumferential stress returns 
to its initial state far away from the shaft (Figure 8). The 
soil displacement as well as stress distributions in soil 
show a good agreement with previous studies 
(Berezantzev, 1958; Cheng and Hu, 2005, Tobar and 
Meguid, 2011; Tran  et al., 2012). It can be observed that 

good agreement results were achieved using FE and DE 
simulations. 
 
4 SUMMARY AND CONCLUSIONS 

 
In this paper, two numerical modeling techniques, 

FEM and DEM, were used to investigate the lateral earth 
pressure acting on a cylindrical shaft and the stresses in 
the surrounding soil. In the FE approach, an axisymmetric 
joint element was utilized to model the interaction 
between the shaft lining and the surrounding soil using an 
axisymmetric finite element method. In the DE approach, 
the soil domain was modeled using discrete particles 
while the shaft is modeled as a rigid cylinder. The results 
of the FE and DE simulations including pressure acting on 
the shaft and stress distributions in soil were analyzed.  

Lateral pressure along the shaft obtained from both 
the FE and DE analyses agreed well with the analytical 
solutions proposed by Terzaghi and Berezantzev. Both 
the FE and DE simulations confirmed a non-uniform 
failure zone of conical shape along the shaft. The zone 
increased in size from the bottom of the shaft up to a 
region of about 2.5 times the shaft radius at the surface. 
The movement of the shaft wall resulted in a redistribution 
of stresses within the soil medium. The arching effect had 
lead to a decrease in radial stresses and increase in 
circumferential stresses within a region of radius 0.3 m 
from the shaft center. The FE simulation results presented 
a good agreement with the DE simulation. The study 
demonstrated the efficiency of using the FE and DE 
approaches in simulating vertical shaft problems involving 
granular material.  
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